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Abstract
Levee systems are an important part of California’s water infrastructure, engineered to provide
resilience against flooding and reduce flood losses. The growth in California is partly associated
with costly infrastructure developments that led to population expansion in the levee protected
areas. Therefore, potential changes in the flood hazard could have significant socioeconomic
consequences over levee protected areas, especially in the face of a changing climate. In this study,
we examine the possible impacts of a warming climate on flood hazard over levee protected land in
California. We use gridded maximum daily runoff from global circulation models (GCMs) that
represent a wide range of variability among the climate projections, and are recommended by the
California’s Fourth Climate Change Assessment Report, to investigate possible climate-induced
changes. We also quantify the exposure of several critical infrastructure protected by the levee
systems (e.g. roads, electric power transmission lines, natural gas pipelines, petroleum pipelines,
and railroads) to flooding. Our results provide a detailed picture of change in flood risk for
different levees and the potential societal consequences (e.g. exposure of people and critical
infrastructure). Levee systems in the northern part of the Central Valley and coastal counties of
Southern California are likely to observe the highest increase in flood hazard relative to the past.
The most evident change is projected for the northern region of the Central Valley, including Butte,
Glenn, Yuba, Sutter, Sacramento, and San Joaquin counties. In the leveed regions of these counties,
based on the model simulations of the future, the historical 100-year runoff can potentially
increase up to threefold under RCP8.5. We argue that levee operation and maintenance along with
emergency preparation plans should take into account the changes in frequencies and intensities of
flood hazard in a changing climate to ensure safety of levee systems and their protected
infrastructure.

1. Introduction

Levees are crucial water infrastructure systems that
are engineered to provide resilience against flood-
ing events. These man-made structures are among
the critical water infrastructure systems to protect
adjacent drylands and floodplains from flooding and
associated damages (ASCE 2009, Barbetta et al 2017,
Peyras et al 2017). Building levee systems provides
a sense of security against flooding events in the
levee protected regions (Di Baldassarre et al 2015),
which along with the advantages of living in close
proximity to water attract population growth within

leveed protected regions (Di Baldassarre et al 2013,
2018, Collenteur et al 2015, Barendrecht et al 2017,
Hutton et al 2018). The integrity of levee systems
in California, the nation’s most populous state
and largest agricultural producer with more than
15 000 km of levees (USACE 2018), is an import-
ant concern requiring urgent attention. (Burton
and Cutter 2008) indicated that around 1.3 mil-
lion people, mostly low-income and elderly, are at
risk of possible levee failure in the Sacramento,
San Joaquin, and Yolo counties. Recently, during
a flood event generated by a series of extreme
precipitation events, a levee break near Manteca,
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California resulted in the evacuation of 500 residents
(Vahedifard et al 2017).

A majority of levees in the United States and in
particular in California are earthen systems that were
built in the previous century based on the station-
ary assumption with data records of the time (Remo
et al 2009, Dierauer et al 2012, Salas and Obeysekera
2014, Vahedifard et al 2015, 2016, ASCE 2017). The
stationary assumption indicates that the distribu-
tion of past observed events is representative of pos-
sible future conditions (Sadegh et al 2015, 2019).
However, numerous studies in recent years contra-
dicted with the stationary assumption and showed
that changes in climate are anticipated to alter the
characteristics of flooding events (e.g. Barnett et al
2005, Kundzewicz et al 2014, Mallakpour and Vil-
larini 2015, Asarian and Walker 2016, Asadieh and
Krakauer 2017, Ehsani et al 2017, Najibi et al 2017).
For instance, (Das et al 2013) projected about 30%–
100% increase in the magnitude of annual maximum
streamflow over California. Also, (Mallakpour et al
2018) showed that while the annual average daily dis-
charge is projected to remain unchanged over Califor-
nia, the magnitude of the annual maximum daily dis-
charge is projected to increase significantly by the end
of this century. For coastal southern California, (Feng
et al 2019) projected that 100-year flood magnitude
could increase up to 185% due to global warming.

Literature shows that part of the observed increase
in flood damage over the United States can be attrib-
uted to the growth in human activities over flood-
prone regions (e.g. Pielke and Downton 2000, Gall
et al 2011, Peterson et al 2013). (Heine and Pinter
2012) conceptually and empirically showed the effect
of constructing levees on discharge and adjacent
floodplain. They indicated that building levees can
decrease the area of land that can store flood water,
and can result in a higher flood risk upstream of
levee infrastructure. Changes in climate can also res-
ult in possible changes in intensity and frequency of
flood events that will in turn impact the flooding
risk (Moftakhari et al 2017, Sadegh et al 2018). Pos-
sible increase in the flood hazard could cause large
socioeconomic consequences over the leveed region.
(Florsheim and Dettinger 2007) investigated levee
breaks in California from 1852–2006 and reported
that ‘the long-term climate and flood variability govern
levee breaks.’ (Florsheim and Dettinger 2015) indic-
ated that 81% of levee failure in the Central Valley
of California since 1951 happened due to wintertime
flooding generated bywarm andwet storms transpor-
ted by atmospheric rivers (AR) during the winter sea-
son. Also, (Deverel et al 2016) identified the impacts
of climate change on flooding as one of the challenges
that threaten the integrity of levee systems across Cali-
fornia in the future.

This paper seeks to address the possible changes
in the direction of flood hazard over the leveed area
of California and quantify the change in the exposure

of critical infrastructure (e.g. roads, electric power
transmission lines, natural gas pipelines, petroleum
pipelines, and railroads) to flood hazard. The over-
arching goal of this study is to define the vulnerably
of leveed systems acrossCalifornia to possible changes
in the future flood hazard.We use four global circula-
tion models (GCMs) from the Fifth Coupled Model
Intercomparison Project (CMIP5) to investigate the
possible relative changes in the future flood hazard.
These four models best represent historical observa-
tions in California among the 32 GCMs investigated
by the 4th California Climate Assessment workforce,
and are deliberately selected to portray a wide range
of variability among climate projections. The false
sense of security against flooding events motivated
humans to boost development across the leveed areas,
a notion known as levee effect (Hutton et al 2018);
which in turn increases vulnerability of human set-
tlements to flooding hazards, especially in a changing
climate (Ludy and Kondolf 2012). Therefore, poten-
tial changes in flood hazard could leave very large eco-
nomic and social repercussions over the leveed area
(e.g. fatalities, agricultural losses, property losses).
The insights gained from this study will help water
manager and risk management community to get
a crucial understanding of the potential threats of
future flood hazard in the California levee protec-
ted regions. Findings of this study will inform neces-
sary mitigation actions in a timely manner to adapt
levee and critical infrastructure systems to the pos-
sible changes in the future. To our knowledge, this is
the first study that identifies possible future changes
in the flood hazard in a changing climate and its con-
sequences on the levee protected regions of Califor-
nia. A comprehensive flood risk assessment in leveed
areas is a function of three components, hazard (like-
lihood of the flood event), exposure (assets and pop-
ulation exposed to the flood events), and vulnerab-
ility (capacity of a system to damp the impact of a
flood event; e.g. Collenteur et al 2015, USACE 2018).
Here, we only focus on the direction of flood hazard
changes and critical infrastructure exposure to these
changes.

2. Data andmethod

This study focuses on the levee protected areas ofCali-
fornia based on the National Levee Database (NLD)
maintained by the U.S. Army Corps of Engineers
(USACE) (NLD 2018). There are 3242 levee sys-
tems in California with an average age of 57 years.
In this state, 82% of counties (48 counties) have at
least a levee system with a 1 km length. For Cali-
fornia, levee systems play an important role by pro-
tecting over 6 million people, and an estimate of $8
billion in the property (NLD 2018). All informa-
tion related to the location of levee systems and their
protected area were obtained from the NLD dataset
(figure S1(stacks.iop.org/ERL/15/064032/mmedia)).
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We used simulated daily gridded total runoff
(mm/day) to assess the impacts of climate change
on flood hazards over the leveed area. This dataset
has a horizontal grid resolution of 0.0625◦ (approx-
imately 6 km) for the period of 1950–2099. Flooding
in the levee protected regions can occur due to levee
overtopping and breaching, prolonged extreme pre-
cipitation events over the levee protected area, and
water going around the floodwalls (USACE 2018).
Total runoff is a proper hydrological variable to rep-
resent the changes in flood hazard over levee protec-
ted areas, as it incorporates all of the aforementioned
flood conditions.

The gridded total runoff was developed at the
Scripps Institution of Oceanography, University
of California, San Diego, and was obtained from
the web-based climate adaptation planning tool
(Cal-Adapt 2019). They used the high-resolution
Localized Constructed Analogs (LOCA) downscaled
and bias-correctedminimum andmaximum temper-
ature, and precipitation to force the Variable Infilt-
ration Capacity (VIC; Lohmann et al 1996, 1998)
hydrological model to calculate different hydrocli-
mate variables such as the total runoff (details are
described in Pierce et al 2016, 2018). The VIC model
parameters were calculated based on the Univer-
sity of Colorado hydrological dataset for Califor-
nia (Livneh et al 2013). Researchers use downscaling
techniques to refine the coarse spatial resolution in
the GCMs for climate change impacts assessment
studies (Mehrotra and Sharma 2015). The LOCA
method has been adopted by the 4th California Cli-
mate Assessment workforce as the downscaling tech-
nique. The LOCA method computes the downscaled
minimum and maximum temperature, and precipit-
ation using a multiscale spatial matching framework
in order to pick the suitable analog days from the
historical observations for each grid. (Pierce et al
2014) indicated that the LOCA method is a frame-
work that can preserve regional patterns in temper-
ature and precipitation. Climate model simulations
are subject to biases and uncertainties, hence bias
correction methods are often used to improve the
LOCA forcing.

The gridded total runoff dataset used in this
study is based on four GCMs, namely HadGEM2-
ES (Jones et al 2011), CNRM-CM5 (Voldoire et al
2013), CanESM2 (Chylek et al 2011) and MIROC5
(Watanabe et al 2010) from the CMIP5 that rep-
resent warm/dry, cool/wet, average and complement
climate conditions across California for two rep-
resentative concentration pathways (RCPs): RCP4.5
(relatively moderate scenario) and RCP8.5 (busi-
ness as usual scenario; (Climate Change Technical
Advisory Group (CCTAG, 2018)). As described by
(Pierce et al 2016) these four GCMs were selec-
ted from the 32 different CMIP5 models for cli-
mate change impacts assessment studies in Califor-
nia. We chose these four models recommended by

the Climate Action Research Working Group of the
4th California’s Climate Change Assessment, because
the future climate related policies in California will
be devised based on the outputs of these models
(California Department of Water Resources (CDWR,
2015)). Our selectedmodels represent a wide range of
variability between climate projections. We emphas-
ize that climate models display a range of variation
that can influence the estimation of flood hazard
(Giuntoli et al 2015, Mehrotra and Sharma 2016).
However, they are useful means that can inform pos-
sible changes in flood hazard under the projected cli-
mate change scenarios.

To assess the extent of critical infrastructure loc-
ated in the leveed area, we used several publicly avail-
able datasets (all updated in 2018):

(a) The distribution of natural gas pipelines, and
petroleum pipelines were obtained from the
U.S. Energy Information Administration (EIA
2018).

(b) The distribution of electric power transmission,
including lines that convey high voltages vary-
ing from 69 kV up to 765 kV, and railroads
were obtained from the Homeland Infrastruc-
ture Foundation-Level Data (HIFLD 2018).

(c) Information related to the roads was acquired
from the Topologically Integrated Geographic
Encoding and Referencing (TIGER) product
developed by the United States Census Bureau
(TIGER 2018).

These are among the critical infrastructure
important for the economic and social growth in
the region, and are spatially distributed inside the
leveed protected regions. Initially, we calculated the
length of roads, electric power transmission con-
ductors, natural gas pipelines, petroleum pipelines,
and railroads that are protected by levee systems. We
assumed that a possible change in the flood hazard
of a levee system would equally impact the expos-
ure of all the infrastructure within that system. The
exposure of an individual infrastructure depends
on factors such as distance to water bodies, size of
the watershed, land use and land cover, topography
and their position relative to the ground level. As
indicated by (Moftakhari and Aghakouchak 2019),
a comprehensive assessment of risk associated with
the change in hazards should consider these factors
as well.

We used the Generalized Extreme Value (GEV)
distribution to estimate the flood frequency distri-
bution for each of the levee systems. We first utilize
the annual block maximum sampling technique to
extract the maximum daily runoff for each year and
for each of the four climate models and two scen-
arios. Then, we fit the GEV distribution to estimate
the flood frequency distribution for each pixel using
extReme 2.0 package in R (Gilleland and Katz 2016).
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The cumulative distribution function of the GEV
distribution can be written as (Coles 2001, Cheng
et al 2014):

F(x;µ,σ,ξ) = exp

{
−
[
1+ ξ

(
x−µ

σ

)]−1\ξ
}

(1)

where µ is the location parameter, σ is the scale
parameter and ξ is the shape parameter. To estimate
these parameters, we used the maximum likelihood
method (Coles 2001; Rahnamay Naeini et al 2018).
This statistical model has been used in many hydro-
logical studies to characterize the behavior of extreme
events (Katz et al 2002, Aghakouchak 2013, Cheng
et al 2014). The GEV distribution adequately repres-
ents the tail properties of peak runoff distribution
according to the bootstrap p-values of the goodness-
of-fit tests (the Kolmogorov–Smirnov, Anderson–
Darling, and Cramer–vonMises tests (figure S2–S4)),
that are larger than 5% in all the cases. Using the
extreme value theory, we then computed the percent
change between the magnitudes of a 100-year run-
off in the future (2020–2099) relative to the historical
(1950–2005) period as an indicator of change in the
flood hazard for each pixel and for each climatemodel
and scenario using normalized percent change:

Future−Historical

Historical
× 100 (2)

Then, we spatially averaged the percent change in the
magnitude of the 100-year runoff over each levee pro-
tected area to compute the change in the flood haz-
ard for each levee system. In this study, we used the
100-year runoff concept since the majority of levee
systems in California have been designed to with-
stand at least a peak flow with a 1% annual chance
of occurrence (i.e. 100-year flood; Burton and Cutter
2008, Ludy and Kondolf 2012). Moreover, the 100-
year flood was selected as the minimum flood pro-
tection level by the US National Flood Insurance Pro-
gram (NFIP) and Federal Emergency Management
Agency (FEMA). Based on FEMA guideline a levee
system can be accredited (i.e. certified to provide pro-
tection against a base flood) that protect floodplain
from 100-year event.

3. Results and discussion

We first quantify the length of roads, electric power
transmission conductors, natural gas pipelines, pet-
roleum pipelines, and railroads that are protected by
each of the Californian levee systems using the NLD
and critical infrastructure datasets (figure 1; Table S1
summarizes the results). Figure 1(A) shows the length
of paved roads protected by each of the levee sys-
tems across California. This figure reveals that the
highest length of roads is protected by the ‘Santa Ana
River 1’ levee system (~2890 km) in Southern Cali-
fornia followed by ‘MA-09 of City of Sacramento’

(~2650 km) and ‘Sacramento River West Bank’ levee
systems (~1500 km) in California’s Central Valley.
Figure 1(B) presents the length of electric power
transmission conductors inside leveed regions, where
‘MA-09 of City of Sacramento’ and ‘Santa Ana River
1’ levee systems protect the highest length of electrical
conductors (~404 km and ~360 Km, respectively).

Figure 1(C) depicts the length of natural gas
pipelines located within the service area of each levee
systemacrossCalifornia, where the ‘SacramentoRiver
West Bank’ levee system has the highest length of
pipelines (~183 km). For Southern California, expos-
ure of gas pipelines is relatively higher for the levee
systems that are closer to the coast. In this region,
the highest length of natural gas pipelines is located
inside the ‘Santa Ana River 1’ levee system (~54 km)
in Orange County. For Los Angeles County, the ‘Los
Angeles River/Compton Creek 2’ levee system has
the highest length of natural gas pipelines (~40 km).
Figure 1(D) shows the length of petroleum pipelines
inside the levee systems in California, where the ‘San
Joaquin County Levee 96’ (~165 km) in the Cent-
ral Valley protects the highest length of petroleum
pipelines. Figure 1(E) displays the length of railroads
surrounded by each levee system.Here, the ‘MA-09 of
City of Sacramento’ levee system, followed by ‘Santa
Ana River 1’, has the highest length of railway tracks
(~90 km and ~50 km, respectively). In general, levee
systems located over the northern part of the Cent-
ral Valley and coastal counties of Southern Califor-
nia (Los Angeles and Orange Counties) contain the
highest length of critical infrastructure systems.

After computing the length of critical infrastruc-
ture within the service area of the levee systems across
California, it is vital to investigate how the flood haz-
ard would possibly change for them in a changing cli-
mate. Figure 2 show the percent change in the mag-
nitude of a 100-year runoff in the future relative to the
baseline period as a proxy to examine the direction
of changes in the flood hazard under RCP 4.5. The
spatially distributed results show that there is a signi-
ficant number of levee systems that exhibit increase
in the magnitude of 100-year runoff in the projection
period relative to the historical period. The CanESM2
model, which is projected to be associated with an
average climate condition for the state of California
in the future, shows that other than levee systems loc-
ated in the southern part of the Central Valley with up
to 68% projected decrease in the flood hazard, all the
levee systemswill likely experience a higher flood haz-
ard up to a threefold increase by the end of this cen-
tury (figure 2(A)). Under the CanESM2 projections,
about 30%of the levee systems across California show
a decrease in their flood hazard in the future. The
CNRM-CM5model, which represents a cool and wet
condition across California in the future, shows the
highest increase in the magnitude of 100-year runoff
relative to the other threemodels (figure 2(B)). Under
this model, about 93% of the levee systems display
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Figure 1. The length of (A) roads, (B) electric power transmission lines, (C) natural gas pipelines, (D) petroleum pipelines, and
(E) railroads that are protected by the levee systems over California. Polygons show the levee protected regions in California. Inset
maps in each panel show the map of levee systems of California’s central valley (right inset map) and levees over Southern
California (left inset map). Darker red color shows a higher length of the infrastructure is protected by a levee system.

increase in the flood hazard (up to five times more
likely) in the future. Figure 2(C) shows the result for
HadGEM2-ES, a model that represents a warmer and
dryer future across California, where about 26% of
the levee systems display up to 65% decrease in the
magnitude of 100-year runoff in the future. However,
even with this model, a substantial number of levee

systems (about 74%) are projected to have at least
a slight increase in the magnitude of 100-year run-
off. Results for projected change in the magnitude of
100-year runoff for MIROC5 model (representing a
complement climate condition) reveal that the levee
systems in northern and central parts of the Central
Valley show an increase up to twofold in flood hazard
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Figure 2. Percent changes in the spatial averaged magnitude of 100-year runoff in the projected period (2020–2099) relative to the
baseline period (1950–2005) for (A) CanESM2, (B) CNRM-CM5, (C) HadGEM2-ES, (D) MIROC5, and (E) ensemble median of
climate models under RCP4.5 scenario over the leveed region of California. Polygons show the levee protected regions in
California. The color bar displays the percentage change [%] in the magnitude of 100-year runoff where the blue (red) color
shows levee systems that magnitude of the 100-year runoff expected to increase (decrease) under a warming climate in the future.
Inset maps in each panel show map of levee systems of California’s central valley (right inset map) and levees over Southern
California (left inset map).

in the future, while southern regions show a decreas-
ing pattern up to 70% in the magnitude of the 100-
year runoff (figure 2(D)). Under theMIROC5model,
about 65% of the levee systems show increase in the
flood hazard in the future. Figure 2(E) summarizes

the projected change in the flood hazard in the leveed
areas of California based on the ensemble median
of the four climate models in this study. The results
depict that the direction of change in the frequency of
high runoff events is likely toward increasing pattern
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Figure 3. Percent changes between multimodel median of gridded simulated runoff associated with a projected 100-year flood
level under RCP4.5 (left panel) and RCP8.5 (right panel) relative to the historical period (1950–2005) for the ten levee systems
with highest levee protected area. The dark red line represents the projected multimodel median percent changes in annual
maximum runoff relative to the historical record. The height of the black vertical bars represent the interquartile range (between
75th to 25th percentile) to summarize uncertainties associated with the use of different climate models and RCP scenarios.

(up to twofold) across the leveed area of California,
with about 86% of levee systems showing at least a
slight increase in the magnitude of 100-year runoff.
Expectedly, the increasing pattern is more marked
under the RCP8.5 (figure S5 and table S1) for allmod-
els and the multimodel median.

The most evident change occurs in the north-
ern region of the Central Valley, including Butte,
Glenn, Yuba, Sutter, Sacramento, and San Joaquin
counties. These counties may experience up to a
threefold increase in the flood hazard relative to the
historical period, on average, based on RCP 4.5. In
general, annual precipitation in northern Califor-
nia is higher than southern California (Jones 2000,
Swain et al 2018). The projected increase in the run-
off can be attributed to earlier snowmelt, intensific-
ation of precipitation events, and more precipitation
falling as rain rather than snow (e.g. Dettinger and
Cayan 1995, Stewart et al 2005, Das et al 2011, Ragno
et al 2018). This becomes even more important given
majority of levee breaks across California historically
happened in the November to June period, emphas-
izing the important role of winter storms (Florsheim
and Dettinger 2007, 2015). For instance, (Florsheim
and Dettinger 2015) identified wintertime AR pre-
cipitation events as the main cause for levee fail-
ures in California’s Central Valley. (Espinoza et al
2018) and (Jeon et al 2015) projected that AR events
would bring more frequent and severe precipitation
events to California in a warming climate. The projec-
ted increases in AR events might lead to an increase
in the severity of flood hazard that can affect the
leveed regions.

To explore the uncertainty related to the estim-
ate of the flood hazard with GCMs, we examine
the percent changes between multimodel median of
annual maximum runoff associated with the projec-
ted 100-year runoff level under RCP4.5 (figure 3) and
RCP8.5 (figure S6) relative to the baseline period for
ten levee systems with the highest service lands. Red
lines, in figure 3, signify the most likely change in the
flood hazard and interquartile range show variability
between different climate models used in this study.
This figure implies that while uncertainty from differ-
ent sources including the climate models and scen-
arios are present, there is an agreement between cli-
mate models that flood hazard over these ten levee
systems is likely to increase in the future. For these ten
levee systems, the multimodel median of flood haz-
ard project, on average, about 45% (110%) increase
in the flood hazard in the future under RCP 4.5
(8.5). Therefore, there is a greater chance that the
flood hazard for these ten leveed regions to increase
under the high greenhouse gas concentration levels
(RCP 8.5). We acknowledge the uncertainties asso-
ciated with runoff projections that cascade from the
GCM forcing into the VIC model simulations, which
are in turn compounded by the VICmodel structural
and parameter uncertainties. Moreover, flood fre-
quency analysis (through choice of distribution and
its parameters) also introduces a level of uncertainty
to the analysis. However, GCM projections are the
state-of-the-art method for projection of future haz-
ards, and are proven valuable for devising adaptation
strategies (e.g. van Vliet et al 2016). For a detailed dis-
cussion of the uncertainty sources in flood frequency
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Figure 4. Heatmaps showing possible changes in the flood hazard in the future relative to the baseline period for each of the levee
systems based on different climate models used in this study. In each of the heatmaps, the levee system are sorted descending
based on the length of electric power transmission lines (panels A and B), roads (middle panels), and natural gas pipelines
(bottom panels), where the topmost levee system on the y-axis represents the levee system that has the highest length of the
particular infrastructure inside it. Left panels (A, D and H) depict the result for RCP 4.5 whereas the middle panels (B, E and H)
represent future projections under RCP 8.5 scenario. The color bar shows the percentage change [%] in the magnitude of
100-year runoff. The blue (red) color displays levee systems that the magnitude of the 100-year runoff expected to increase
(decrease) in the future. The right panels (C, F and I) show the locations of the levee systems and the county they are located in.

analysis using GCMprojections, refer to (Mallakpour
et al 2019).

Next, we provide a detailed analysis of the levee
systems that are more susceptible to exposure of crit-
ical infrastructure to the projected changes in the
flood hazards in the future (figure 4 and table S1).
For the sake of brevity, we only present results for
the ten levee systems that encompass the highest
length of electric power transmission (figure 4 top
panels), roads (figure 4 middle panels), and natural
gas pipelines (figure 4 bottom panels). Right pan-
els in figure 4 show the location and county of these
leveed protected regions. Table S1 in the supplement-
ary material enlists the flood hazard susceptibly res-
ults for all of the levee systems and for all of the crit-
ical infrastructure systems of this study. In figure 4,
each cell represents percentage change in the mag-
nitude of the 100-year runoff as a proxy to evaluate
future changes in the flood hazard in the service area
of each levee system based on the aforementioned
four models and their ensemble median. Here, the
multimodel median values summarize the possible

values of the magnitude and direction of changes in
the flood hazard in the future. In addition, the mag-
nitude and direction of flood hazard level for the four
models represent the possible range of uncertainties
associated with the use of different GCMs. Figure 4
shows that from the ten studied levee systems, at least
two show more than 80% increase in the ensemble
median of the flood hazard under RCP 4.8. These
numbers increase significantly under RCP 8.5. Under
the RCP 8.5 scenario, as expected, increases in the
flood hazard are more marked and larger on average.

The information provided here can be used by
water managers to prioritize resources allocated for
rebuilding and maintaining the levee systems based
on possible changes in the flood hazard and exposure
of the critical infrastructure to the projected change
in flood hazard in a warming climate. For example,
the highest length of roads is located within ‘Santa
Ana River 1’ (ID = 3805 010 039) that shows a
relatively small increase in the flood hazard. How-
ever, the second ranked levee system with the highest
length of roads is ‘MA 09—City of Sacramento’
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(ID = 5205 000 441), which is relatively more sus-
ceptible to change in the flood hazard. Based on
these results, watermanagers can invest on emergency
preparation plans to increase resiliency and improve
response effectiveness that can lead to a reduction in
potential loss of life and property during a possible
levee incident (Ludy and Kondolf 2012).

4. Conclusions

We investigate the possible impacts of a chan-
ging climate on flood hazard across levee protected
lands in California based on the US Army Corps
of Engineers levee portfolio. We use gridded max-
imum daily runoff from four GCMs that are recom-
mended by the California’s Fourth Climate Change
Assessment under RCP4.5 and RCP8.5 scenarios. We
also quantify the possible changes in the exposure
of critical infrastructures (e.g. roads, electric power
transmission lines, natural gas pipelines, petroleum
pipelines, and railroads) to flood hazard. Thereby,
we identify levee systems that are susceptible to pro-
jected changes in the flood hazard. We calculate the
length of each of the critical infrastructure protec-
ted by the levees across California. While projec-
tions in the flood hazard change varies across cli-
mate models, and is subject to uncertainty, their
estimates predominantly point to a higher flood haz-
ard in the leveed regions of California. In general,
changes in the flood hazard under the RCP 8.5 path-
way are more pronounced, indicating that under a
high emission scenario (business as usual), we will
likely encounter higher high runoffs withmagnitudes
of up to threefold larger.

Our results demonstrate that levee systems in
the northern part of the Central Valley and coastal
counties of Southern California, which are the most
populous areas of the state, experience the highest
likelihood of changes in the flood hazard. Con-
sequently, the infrastructure protected by these levee
systems are expected to observe substantially higher
rates of exposure to flooding in the future. These pos-
sible changes in the flood hazard are neither con-
sidered in the current levee assessments nor in the
future water resource planning and management for
the levee operation andmaintenance. Climate change
is expected to accelerate the global hydrological cycle,
and increase the number of extremely dry and wet
years across California (Swain et al 2018). (Ragno
et al 2018) showed that intensity, duration, and fre-
quency of future extreme precipitation events are
likely to increase in California; hence, the enhanced
risk associated with flooding over the leveed regions
cannot be neglected. Moreover, the leveed areas can
experience additional loss of lives, since during a flood
event, the power outage and roadblock can delay
emergency response. Our study provides a deeper
understanding of the expected changes in the hazard

levels of the critical infrastructure in the future relat-
ive to the past. In more detail, we identify particular
levee systems that are more susceptible to exposure of
critical infrastructure to the projected changes in the
flood hazards.

Note that the results of this study do not indic-
ate that levee systems, or the critical infrastructure
within their service area, are in any immediate danger
of failure. Here, in face of the modeling uncertain-
ties, we focus on the likely change in the direction
of flood hazard and critical infrastructure exposure
to these possible changes in the future. Climate is
changing and calling into question the infrastruc-
ture systems’ ability to cope with hazards. Using gen-
eral circulation models (GCMs) to investigate pos-
sible changes in the flood hazard under the projected
climate change scenarios is known as the top-down
approach or predict-then-actmethod (e.g. Schlef et al
2018, Taner et al 2019). GCMs can be used to invest-
igate possible changes in the hydrological cycle under
the projected climate change scenarios. There is a
need for further investigations to integrate the out-
come of our study into a decision making frame-
work. To amend and augment the GCM projections,
a bottom-up approach is also needed to link the
possible changes in a natural hazard to the local
and regional policies (Whateley et al 2016, Spence
and Brown 2018, Ray et al 2019). The importance
of incorporating climate change impacts on infra-
structure has been acknowledged by the California
State Legislature as an emerging problem through
Assembly Bill No. 2800 (AB-2800 2016). The goal
of California’s AB-2800 is to achieve a set of climate
adaptive strategies and guidelines to ensure service-
ability, safety, and durability of California’s infra-
structure systems in the future. The insight gained
from assessing potential changes in the flood haz-
ard under a warming climate in levee protected areas
is one of the means by which water managers and
decision-makers can devise possible climate adaptive
strategies to ensure safety and functionality of levees
and levee protected infrastructure. We argue that the
future developments in the leveed regions need to
consider the possible changes in the flood hazard in a
changing climate. To ensure the adaptation and mit-
igation strategies are able to reduce flood impacts
in the leveed area, we need to include hydrological
risks into guidelines and actions that address water
challenges. These strategies, if informed by climate
change analyses, can lead to increased public safety
and security of infrastructure systems protected by
the levees.

We should emphasize that there is no single solu-
tion for resolving flooding threats to different levee
systems; each system is unique and must be eval-
uated on its own. In this study, we did not per-
form any physical failure analysis of levees and crit-
ical infrastructure or flood mapping. However, the
leveed regions that we find as more vulnerable, can
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be prioritized to perform regional mechanistic mod-
eling. Physical mechanistic modeling frameworks are
typically used in structural and geotechnical engin-
eering. Integrating forcing from the hydrological ana-
lysis, we can investigate the performance of levee sys-
tems in the future. For such a study, we need to have a
runoff dataset with a higher temporal and spatial res-
olution that takes into account the changes in both the
climate and the land use and land cover of the levee
protected regions. Therefore, we also need to invest
in developing the local and global hydraulic models
(Wing et al 2019, Johnson et al 2020) with forcing
from the GCMs to get a higher temporal and spatial
resolution runoff datasets.
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